Pico Stack SDR (Si5351A)ダイレクトコンバージョン接続にしてプログラム検波によるAM放送受信を行いました。
Si5351Aクロックジェネレータから局発周波数4倍を[90度移相器](74HC74)にジャンパー接続。
プログラム開発は[Arduino IDE]pico sdk librariesによるZEPエンジニアリング株式会社:【5_PicoStackSDR_program.zip】[Pico SDR IQ.uf2]AM検波関数を使用しAM放送を受信しました。
●AM検波
√(I²+Q²) → float result = sqrt(I_signal*I_signal + Q_signal*Q_signal);
●ZEPエンジニアリング株式会社:
●JH7UBC局サイト参考:【ESP32 Si5351A 7MHz VFOの試作】【ESP32 ロータリーエンコーダのテスト】
●同ブログ関連記事:【Pico Stack SDRにSi5351Aクロックジェネレータ追加】
【CK0】と【LO】(74HC74側)ジャンパーする
[Si5351A]【CK0】
2000KHz
↓
[90度移相器](74HC74)
㊤【LO_I】→500KHz( 90度遅れ)
㊦【LO_Q】→500KHz ( 0 )
●[周波数]ロータリーエンコーダ[ステップ周波数]エンコーダスイッチより局発周波数を選択
●ジャンパーピン【Div】
ジャンパーピン【Ext】
●プログラム検波 531KHz NHK第一を受信
LO:510KHz
LO:550KHz
ダイレクトコンバージョン接続 プログラム検波
図面
プログラム Arduino IDE【ボード:Raspberry Pi Pico】
#include <Wire.h>
#include <LiquidCrystal.h>
//pico sdk libraries
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/gpio.h"
#include "hardware/timer.h"
#include "hardware/irq.h"
#include "hardware/adc.h"
#include "hardware/pwm.h"
//LiquidCrystal(rs, enable, d4, d5, d6, d7)
LiquidCrystal lcd(4, 5, 0, 1, 2, 3);
int audio_slice; //PWM slice for audio
int audio_gain = 3; //audio gain
//Si5351A関係の定義
#define Si5351A_ADDR 0x60
#define MSNA_ADDR 26
#define MSNB_ADDR 34
#define MS0_ADDR 42
#define MS1_ADDR 50
#define MS2_ADDR 58
#define CLK0_CTRL 16
#define CLK1_CTRL 17
#define CLK2_CTRL 18
#define OUTPUT_CTRL 3
#define XTAL_LOAD_C 183
#define PLL_RESET 177
const uint32_t XtalFreq = 25000000;
uint32_t divider;
uint32_t PllFreq;
uint8_t mult;
uint32_t num;
uint32_t denom;
uint32_t l;
float f;
uint32_t P1;
uint32_t P2;
uint32_t P3;
//Rotary endoder関係の定義
#define ENC_A 17
#define ENC_B 14
volatile uint8_t old_value = 0x11;
volatile uint8_t value = 0;
volatile uint8_t D;
volatile int8_t count = 0;
//STEP関係の定義
#define SW_STEP 11
uint16_t STEP = 10000; //STEP 初期値
//VFO関係の定義
const uint32_t LOW_FREQ = 2000000; //下限周波数
const uint32_t HI_FREQ = 6000000; //上限周波数
uint32_t FREQ = 2000000; //VFO周波数初期値
uint32_t FREQ_OLD = FREQ; //周波数の前の値
int16_t df = 130; //周波数補正値(Hz)
String freqt = String(FREQ);
String freqtB = String(FREQ);
String fH_old = "";
String fM_old = "";
String fL_old = "";
//ROtary encoder 割込みサービスルーチン
void rotary(){
value = (digitalRead(ENC_B)<<1) | digitalRead(ENC_A);
if(old_value != value){
D = ((old_value << 1) ^ value) & 3;
if(D < 2){
count += 1;
}else{
count -= 1;
}
if(count >= 4){
FREQ += STEP;
count = 0;
}else if(count <= -4){
FREQ -= STEP;
count = 0;
}
FREQ = constrain(FREQ,LOW_FREQ,HI_FREQ); //VFOの下限と上限を超えないように
old_value = value;
}
}
//レジスタに1バイトデータを書き込む。
void Si5351_write(byte Reg , byte Data){
Wire.beginTransmission(Si5351A_ADDR);
Wire.write(Reg);
Wire.write(Data);
Wire.endTransmission();
}
//Si5351Aの初期化
void Si5351_init(){
Si5351_write(OUTPUT_CTRL,0xFF); //Disable Output
Si5351_write(CLK0_CTRL,0x80); //CLOCK0 Power down
Si5351_write(CLK1_CTRL,0x80); //CLOCK1 Power down
Si5351_write(CLK2_CTRL,0x80); //CLOCK2 Power down
Si5351_write(XTAL_LOAD_C,0x92); //Crystal Load Capasitance=8pF
Si5351_write(PLL_RESET,0xA0); //Reset PLLA and PLLB
Si5351_write(CLK0_CTRL,0x4F); //CLOCK0 Power up
Si5351_write(OUTPUT_CTRL,0xFE); //Enable CLOCK0
}
void VFO_Set(uint32_t freqency){
//PLLのセット
divider = 900000000 / freqency;
if (divider % 2) divider--;
PllFreq = divider * freqency;
mult = PllFreq / XtalFreq;
l = PllFreq % XtalFreq;
f = l;
f *= 1048575;
f /= XtalFreq;
num = f;
denom = 1048575;
P1 = (uint32_t)(128 * ((float)num /(float)denom));
P1 = (uint32_t)(128 * (uint32_t)(mult) + P1 - 512);
P2 = (uint32_t)(128 * ((float)num / (float)denom));
P2 = (uint32_t)(128 * num -denom * P2);
P3=denom;
Parameter_write(MSNA_ADDR,P1,P2,P3);
//MultiSynth(分周器)のセット
P1 = 128 * divider - 512;
P2 = 0;
P3 = 1;
Parameter_write(MS0_ADDR,P1,P2,P3);
}
//レジスタにパラメータP1,P2,P3を書き込む。
void Parameter_write(uint8_t REG_ADDR,uint32_t Pa1,uint32_t Pa2,uint32_t Pa3){
Si5351_write(REG_ADDR + 0,(Pa3 & 0x0000FF00) >> 8);
Si5351_write(REG_ADDR + 1,(Pa3 & 0x000000FF));
Si5351_write(REG_ADDR + 2,(Pa1 & 0x00030000) >> 16);
Si5351_write(REG_ADDR + 3,(Pa1 & 0x0000FF00) >> 8);
Si5351_write(REG_ADDR + 4,(Pa1 & 0x000000FF));
Si5351_write(REG_ADDR + 5,((Pa3 & 0x000F0000) >> 12) | ((Pa2 & 0X000F0000) >> 16));
Si5351_write(REG_ADDR + 6,(Pa2 & 0x0000FF00) >> 8);
Si5351_write(REG_ADDR + 7,(Pa2 & 0x000000FF));
}
//周波数表示
void Freq_Disp(long frequency){
freqt = String(frequency);
freqtB = String(frequency/4);
String fH = freqt.substring(0,1);
String fM = freqt.substring(1,4);
String fL = freqt.substring(4,6);
String fHB = freqtB.substring(0,1);
String fMB = freqtB.substring(1,4);
String fLB = freqtB.substring(4,6);
lcd.clear();
lcd.setCursor(3,0);
if (STEP == 10)lcd.print("10Hz");
if (STEP == 100)lcd.print("100Hz");
if (STEP == 1000)lcd.print("1KHz");
if (STEP == 10000)lcd.print("10KHz");
//MHzの表示
lcd.setCursor(1,1);
lcd.print(fH);
lcd.setCursor(2,1);
lcd.print(".");
lcd.setCursor(9,1);
lcd.print(fHB);
fH_old = fH;
//KHzの表示
lcd.setCursor(3,1);
lcd.print(fM);
lcd.setCursor(10,1);
lcd.print(fMB);
fM_old = fM;
//Hzの表示
lcd.setCursor(6,1);
lcd.print(fL);
lcd.setCursor(13,1);
lcd.print(fLB);
fL_old = fL;
}
//STEP表示
void Step_Disp(){
lcd.clear();
lcd.setCursor(1, 0);
if (STEP == 10)lcd.print("10Hz");
if (STEP == 100)lcd.print("100Hz");
if (STEP == 1000)lcd.print("1KHz");
if (STEP == 10000)lcd.print("10KHz");
Freq_Disp(FREQ);
}
//STEP切り替え
void Set_Step(){
if (STEP == 10){
STEP = 10000;
}else{
STEP /= 10;
}
delay(10);
Step_Disp();
while(digitalRead(SW_STEP) == LOW){
delay(10);
}
}
void am_demod()
{
//interrupt setting
// hardware_alarm_set_target(0, make_timeout_time_us(16)); //62.5ksps
//read ADC (In-phase channel)
adc_select_input(0);
int adc_data_I = adc_read(); //0 to 4095
//read ADC (Quadrature channel)
adc_select_input(1);
int adc_data_Q = adc_read(); //0 to 40965
//remove the offset and normalize the values
float I_signal = (float)(adc_data_I-2048)/2048.0f; //-1.0f to 1.0f
float Q_signal = (float)(adc_data_Q-2048)/2048.0f; //-1.0f to 1.0f
//calculate the absolute value
float result = sqrt(I_signal*I_signal + Q_signal*Q_signal); //0 to sqrt(2)
//PWM output (you can change the value "0.1f" to adjust suitable volume.)
pwm_set_chan_level(audio_slice, PWM_CHAN_B, (int)(256.0f * result * (float)audio_gain * 0.1f) );
}
void setup(){
Serial.begin( 9600 );
Wire.setSDA(12); //SDA
Wire.setSCL(13); //SCL
Wire.begin();
//ロータリーエンコーダとSTEP使用ピンの設定とプルアップ
pinMode(ENC_A, INPUT_PULLUP);
pinMode(ENC_B, INPUT_PULLUP);
pinMode(SW_STEP, INPUT);
//ロータリーエンコーダ割込み設定
attachInterrupt(ENC_A, rotary, CHANGE);
attachInterrupt(ENC_B, rotary, CHANGE);
lcd.begin( 16, 2 );
lcd.clear();
Si5351_init(); //Si5351Aの初期化
Step_Disp();
VFO_Set(FREQ + df);
Freq_Disp(FREQ);
//ADC init
adc_init();
adc_gpio_init(26); //GPIO 26
adc_select_input(0); //GPIO26 is ADC channel 0
adc_set_clkdiv(0); //ADC clock: 48MHz
adc_gpio_init(27); //GPIO 27
adc_select_input(1); //GPIO27 is ADC channel 1
adc_set_clkdiv(0); //ADC clock: 48MHz
//PWM init for Audio (GPIO15, PWM7B)
gpio_set_function(15, GPIO_FUNC_PWM); //use GPIO15 as PWM
audio_slice = pwm_gpio_to_slice_num(15); //get the slice number
pwm_set_enabled(audio_slice, true); //enable the PWM channel
pwm_set_wrap(audio_slice, 255); //PWM frequency divider setting
pwm_set_chan_level(audio_slice, PWM_CHAN_B, 128);
}
void loop(){
am_demod();
if(digitalRead(SW_STEP) == LOW)Set_Step();
if(FREQ != FREQ_OLD){ //周波数FREQが変わったら、Si5351Aの周波数を変更
VFO_Set(FREQ + df);
Freq_Disp(FREQ);
FREQ_OLD = FREQ; //変更された周波数を保存
}
}
0 件のコメント:
コメントを投稿