Raspberry Pi Pico
による IIRフィルタ(カットオフ周波数3.5kHz)を下記サイトのライブラリ#include <IIRFilter.h>を使用してIIRフィルタの周波数特性確認を行いました。
参考サイト
●デジタルフィルタアナライザ - DIGITALFILTER.COM【https://digitalfilter.com/products/dfalz/jpdfalz.html】
●HS SOFT【https://hs-soft.exout.net/iir.php】
●双一次変換によるIIRフィルタ設計【https://nettyukobo.com/bilinear_transform/】
●IIR フィルタ設計の一般的手法【https://ameblo.jp/an-engineer2019/entry-12502847534.html】
●github.com/JR3XNW
結線
OLED Pico
SDA - GP16
SCL - GP17
VCC - 3V3
GND - GND
tttapa/Filters
【Filters-master】ZIPをダウンロードしてArdunoのライブラリにコピーする。
※計算式はFilters-masterから引用
const double b_coefficients[] = { b_0, b_1, b_2, ... , b_P };
const double a_coefficients[] = { a_0, a_1, a_2, ... , a_Q };
IIRFilter iir(b_coefficients, a_coefficients);
IIR フィルタ設計の一般的手法
ブロック図と計算式は上記サイトから引用
係数計算(参考)
デジタルフィルタアナライザ - DIGITALFILTER.COM
【dfalz1】ZIPをダウンロードして展開・実行する
【Design】
【カットオフ周波数指定】
→係数出力
LPF(ローパスフィルター)
const double b_lp[] = {a0,a1,a2};
const double a_lp[] = {1,b1,b2};
↓
const double b_lp[] = {0.262842002,0.525684003,0.262842002};
const double a_lp[] = {1,-0.197631520,0.248999526};
IIRFilter lp(b_lp, a_lp);
lp.filter(入力データ); //入力データ → IIRフィルタ →
HPF(ハイパスフィルタ)
const double b_lp[] = {a0,a1,a2};
const double a_lp[] = {1,b1,b2};
↓
const double b_lp[] = {0.116432507, -0.232865015,0.116432507};
const double a_lp[] = {1,0.906843365,0.372573394};
IIRFilter lp(b_lp, a_lp);
lp.filter(入力データ); //入力データ → IIRフィルタ →
プログラム Arduino IDE【ボード:Raspberry Pi Pico】
#include <Arduino.h>
#include <U8g2lib.h>
#include <arduinoFFT.h> // v2.0.2
#include <Wire.h>
#include <IIRFilter.h>
//IIR Cutoff-3KHz LPF
//https://github.com/JR3XNW/pico-Program-Lab/blob/main/Filter_sweep_test_SpectrumDisplay_IIR.ino
const double b_lp[] = {0.03478604, 0.06957207, 0.03478604};
const double a_lp[] = {1.0, -1.40750534, 0.54664949};
// 3500Hz LPF IIR
//const double b_lp[] = {0.262842002,0.525684003,0.262842002};
//const double a_lp[] = {1,-0.197631520,0.248999526};
// 8000Hz HPF IIR
//const double b_lp[] = {0.116432507, -0.232865015,0.116432507};
//const double a_lp[] = {1,0.906843365,0.372573394};
IIRFilter lp(b_lp, a_lp);
U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0); //ディスプレイ設定
ArduinoFFT<double> FFT; // v2.0.2 Explicit data types using templates
const int samples = 128; // Number of FFT samples.
const float startFrequency = 100.0; // Start frequency (Hz)
const float endFrequency = 10000.0; // End frequency (Hz)
// frequency sweep function.
void frequencySweep(double *vReal, double *vImag) {
float frequencyStep = (endFrequency - startFrequency) / samples;
for (int i = 0; i < samples; i++) {
float currentFrequency = startFrequency + (i * frequencyStep);
//sin波 sin*2*π*f*t
float signal = sin(2 * PI * currentFrequency * millis() / 256.0);
float filteredSignal = lp.filter(signal); //sweep(signal)→iirフィルタ
//float filteredSignal = signal/2; //sweep信号のみ
vReal[i] = filteredSignal;
vImag[i] = 0;
}
}
// FFT and OLED display functions (line graph display).
void displayFFT(double *vReal, double *vImag) {
FFT.windowing(vReal, samples, FFTWindow::Hamming, FFTDirection::Forward); //vReal 窓関数
FFT.windowing(vImag, samples, FFTWindow::Hamming, FFTDirection::Forward); //vImag 窓関数
FFT.compute(vReal, vImag, samples, FFTDirection::Forward); //FFT処理(複素数で計算)
FFT.complexToMagnitude(vReal, vImag, samples); //複素数を実数に変換
// Clear graph drawing area (overwrite with background color).
// Here, the graph area is overwritten with a black rectangle.
u8g2.setDrawColor(0); // Set background color (usually black).
u8g2.drawBox(0, 0, 128, 52); // Clear graph area.■(始点のX座標, 始点のY座標, 幅, 高さ)
u8g2.setDrawColor(1); // Re-set the drawing color (white).
// Drawing FFT results.
for (int i = 1; i < (samples / 2); i++) {
int x = map(i, 1, samples / 2, 0, 128); //周波数軸(現数値,現下限,現上限,変換下限,変換上限)
int y = map(vReal[i], 0, 14, 53, 0); //信号強度(現数値,現下限,現上限,変換下限,変換上限)
u8g2.drawLine(x, 53, x, y); //スペクトラム表示(始点X座標, 始点Y座標, 終点X座標, 終点Y座標)
}
// Send buffer to update screen.
u8g2.sendBuffer();
}
void setup() {
Wire.setSDA(16); //SDA
Wire.setSCL(17); //SCL
Wire.begin();
u8g2.begin();
// Redraw the static content (lines and texts) each time to prevent flickering
u8g2.drawFrame(0, 0, 128, 54); //周波数軸:□(座標X,座標Y,幅,高さ)
for (int xl = 10; xl < 128; xl += 13) {
u8g2.drawLine(xl, 53, xl, 55); //周波数目盛(始点X座標, 始点Y座標, 終点X座標, 終点Y座標)
}
u8g2.setFont(u8g2_font_micro_tr); // Set the font for the numbers
u8g2.drawStr(10, 64, "1k"); //(X座標, Y座標, 文字列)
u8g2.drawStr(23, 64, "2k");
u8g2.drawStr(36, 64, "3k");
u8g2.drawStr(49, 64, "4k");
u8g2.drawStr(62, 64, "5k");
u8g2.drawStr(75, 64, "6k");
u8g2.drawStr(88, 64, "7k");
u8g2.drawStr(101, 64, "8k");
u8g2.drawStr(114, 64, "9k");
}
void loop() {
double vReal[samples];
double vImag[samples] = {0}; // Imaginary part is initialized to 0.
frequencySweep(vReal, vImag);
displayFFT(vReal, vImag); // Call a function to display FFT results.
}
0 件のコメント:
コメントを投稿